Operation CHARM: Car repair manuals for everyone.

Design [4 of 4]

Main relay (system relay)




The function of the main relay (system relay) is to supply certain components with voltage.
The relay is mechanical and has a closing and opening function. In the rest position the circuit in the relay is open.
The main relay terminals (#30 and #86) are supplied with voltage by the battery. When the ignition key has been turned and the engine control module (ECM) is powered, the terminal (#85) on the main relay is grounded by the engine control module (ECM).
When the terminal (#85) is grounded, the relay is activated and a number of components are powered via the relay terminal (#87).
The main relay is in the integrated relay/fusebox in the engine compartment and is diagnosed by the engine control module (ECM).

Air conditioning (A/C) relay




The air conditioning (A/C) relay supplies the A/C compressor with voltage. The relay is controlled by the engine control module (ECM) based on information from different signals:
- the climate control module (CCM) (via the control area network (CAN))
- the engine coolant temperature
- the position of the accelerator pedal (AP)
- the pressure in the system.
The engine control module (ECM) can temporarily disengage the A/C compressor during wide open throttle (WOT) acceleration.
The relay is mechanical. It has a closing / breaking function and is supplied with power from the system relay.
In the rest position the circuit in the relay is open.
The system relay supplies the coil and the relay with power. The relay activates when the coil is grounded in the engine control module (ECM), the circuit closes and the A/C compressor is supplied with power via the relay voltage output.
The relay coil is grounded (signal) when the engine control module (ECM) receives a signal via the Controller area network (CAN) from the climate control module (CCM) to activate the relay and start the compressor.

Fuel pump (FP) relay
See Design and Function, central electronic module (CEM).

Starter motor relay




The function of the starter motor relay is to supply power to the starter motor. See also Function, Start
The starter motor relay is in the relay/fusebox in the engine compartment.

Injectors




The function of the injectors is to spray fuel into the cylinders in the correct spray patterns. This happens sequentially.
The injectors are in the intake manifold.
It is essential that the injectors are correctly installed with no air leakage around them. Fuel leakage from the top of an injector when it is not activated may lead to starting and driving problems.
The engine control module (ECM) controls the injectors by grounding the valves in pulses.
The engine control module (ECM) can diagnose the injectors. The injectors can be activated using VIDA.

Evaporative emission system (EVAP) valve




The evaporative emission system (EVAP) valve is used to open and close the connection between the EVAP canister and the intake manifold. The valve controls the flow of hydro-carbons (fuel vapor) from the EVAP canister to the engine intake manifold using the vacuum in the intake manifold. This ensures that hydro-carbons stored in the EVAP canister are used in the engine combustion process.
The valve is an electro-magnetic valve which is powered from the system relay. When the valve needs to be opened, it is grounded internally in the engine control module (ECM). The evaporative emission system (EVAP) valve is closed when in the standby position (open-circuit).
When the control module requests that the EVAP canister should be drained (the hydrocarbons stored in the canister should be released into the engine), the control module deploys the evaporative emission system (EVAP) valve by grounding it. A pulse width modulation (PWM) signal is used to ground the valve and to control the degree to which the valve will open. In this way, the drainage of the EVAP canister is matched to the volumetric efficiency of the EVAP canister, the engine speed (RPM) and the engine load.
The engine control module (ECM) can diagnose the evaporative emission system (EVAP) valve. The valve can be activated using VIDA.
The evaporative emission system (EVAP) valve is close to the intake manifold.

Camshaft reset valve (Continuous variable valve timing (CVVT))




The camshaft reset valve controls the oil flow to the CVVT unit (camshaft pulley).
The valve consists of an electro-magnetic valve with a spring-loaded piston. There are slits in the piston which channel the engine lubricating oil to the CVVT unit by moving the piston in the reset valve. The continuous variable valve timing (CVVT) unit turns the camshaft (the camshaft timing changes). The direction in which the camshaft turns depends on the chamber in the CVVT unit which is supplied with oil (pressure). See also: Function Function
The system relay supplies the reset valve with voltage. The valve is grounded (control stage) in the engine control module (ECM). When the valve is grounded using a pulse width modulation (PWM) signal, the oil flow in the valve can be regulated to the different chambers in the continuous variable valve timing (CVVT) unit at variable rates. This allow the angle of the camshaft to be changed precisely and smoothly.
The engine control module (ECM) can diagnose the camshaft reset valve.
The valve is on the cylinder head above the camshaft with camshaft control.

Turbocharger (TC) control valve




The turbocharger (TC) control valve is used to open and close the connection between the intake manifold and the pressure servo for the turbocharger (TC). The valve controls the pressure servo which affects the boost pressure control (BPC) valve and therefore the boost pressure. See also: Function Function
The valve is an electro-magnetic valve which is powered from the system relay. When the valve needs to be opened, it is grounded internally in the engine control module (ECM). The valve can be controlled steplessly by grounding the valve using a pulse width modulation (PWM) signal.
The valve is closed when in the standby position (open-circuit).
The turbocharger control valve can be diagnosed and can be activated using VIDA.
The turbocharger (TC) control valve is on a bracket by the turbocharger.

Ignition coils




The ignition coils supply the spark plugs with high voltage to produce sparks. The engine control module (ECM) controls the ignition coils so that sparks are generated at the correct time.
Each ignition coil has its own integrated power stage.
The ignition coils are in the sparkplug wells above each spark plug.
The engine control module (ECM) can diagnose the ignition coils.

Emissions warning lamp




The emissions warning lamp in the Driver Information Module (DIM) has a warning symbol. This warning symbol varies depending on the market. The warning symbols are:
- Engine symbol" (not USA)
- "CHECK ENGINE" (MIL - Malfunction Indicator Lamp, USA only)
The warning lamp lights when the ignition key is turned to position II. The warning lamp will go out after approximately 15 seconds or if the engine is started when no fault is found in the engine management system.
If Readiness is not complete (certain diagnostic functions not completed), the warning lamp will flash instead of going out when the ignition key is in position II.
The warning lamp will light if there is a fault in one of the parameters in the engine management system. The warning lamp will also light in response to a request transmitted via the control area network (CAN) if there is a fault in the transmission control module (TCM) which affects emissions.